Philtec Application Note

No. 61 Feb 2018

Radiation Resistant Sensor Systems

SENSOR SYSTEMS

Radiation resistant (RadHard) fiber is much more costly than conventional glass fiber. For that reason, *the amount of RadHard fiber used should be minimized as much as possible:*

Connectorize the sensor system

Glass fiber with long lengths can be used on the sensor side of the connector. Short length RadHard fibers are used on the measuring probe side.

Use the smallest diameter probe that will make the required measurement

Small probes use less fiber than large probes, and therefore are more cost effective.

RADIATION RESISTANT MATERIALS

Part B probes are constructed using stainless steel tubing.

For jacketing of the fiber optic cables use:

- Interlocking stainless steel, or
- Peek Shrink Tubing

Contact the factory for design help or a quotation

www.philtec.com

1

Philtec Application Note

Radiation Resistant Sensors

RECENT DEVELOPMENTS

In 2007*, we reported that fibers made from synthetic fused silica on silica optical fiber with high OH will withstand radiation of 10⁸ rad. Today, new radiation resistant (RadHard) fibers have radiation resistant and attenuation recovery characteristics which are far superior to conventional pure silica core fiber. Some are MIL-PRF-49291 certified. These fibers are designed to operate for extended periods of time on low earth orbits, near and deep space, and in applications where risk of exposure to man-made radiation is great.

One fiber supplier claims RadHard fibers can be used for high irradiative environments (for example gamma rays, X-flash, neutrons protons) up to a dose of about 10 kGy. For extreme irradiative environments (some MGy dose) Super RadHard fiber is recommended.

Note: 1 Gy = 100 Rad

PHILTEC®

Figure 1 shows the attenuation comparison between traditional silica (quartz) fiber and new RadHard fiber.

* http://www.philtec.com/downloadssupport/documentlibrary/documents/applicationnotes/V6N37_Radiation.pdf

No. 61 Feb 2018

www.philtec.com