OPERATING INSTRUCTIONS FOR

FIBEROPTIC

DISPLACEMENT MEASUREMENT SYSTEMS

DMS

Type D - Reflectance Dependent Type RC - Reflectance Compensated

Model DMS-

 \geq

Serial No.

PHILTEC, INC.

www.philtec.com

Precision Dynamic Measurements

IMPORTANT:

1. Sensor tips and fiberoptic cables are provided in a variety of sizes and materials, some of which are rugged and others which are very fragile. It is important to handle sensor tips and cables with care, as they are not subject to warranty if damaged.

2. Always ensure that the sensor tip, target area and optical path are clear and clean. Accurate motion amplitude measurements are dependent upon the precise reflection of rays of light from target surfaces. Lint, dirt, or debris particles can obstruct, diffract or reflect light rays in unpredictable directions, thereby compromising the achievable accuracy of these devices. Sensor tips can be cleaned with alcohol and a soft cloth or tissue.

SOFTWARE & FIRMWARE UPDATES

DMS sensors can be updated remotely at any PC.

The most current edition of Philtec's DMS Operating & Control Software and the microprocessor's firmware program are posted at http://www.philtec.com/firmware.htm

WARRANTY

Displacement Measurement Systems are warranted by Philtec, Inc. against defects and workmanship for 12 months from the date of shipment from the factory. Damage to the fiberoptic cable or sensor tip are not covered under this warranty.

Description

Displacement Measurement Systems (DMS) are microprocessor-based systems for providing direct outputs of distance using RS-232 protocol. They are comprised of:

- Fiberoptic Light Guides To Develop Analog Input Signals
- Digital Processing Units with storage capacity for 24 calibrations per channel
- Keypad/front panel display for local operation
- RS232 output for remote operation

Power Requirements

DMS Single Channel: 12 VDC @ 350mA DMS Dual Channel: 12VDC @ 450mA

S	6
	FIBEROPTIC DISPLACEMENT MEASUREMENT SYSTEM
	mm 10.345 1000000000000000000000000000000000000
	Philtec DMS

Fiberoptic Light Guides

D Type Sensors

D Type Sensors are recommended when the target moves along the axis of the sensor; i.e., single axis vibration where the target reflectivity is constant.

Target Motion

OPERATING PRINCIPLE. Light is transmitted to the target thru glass fiberoptic bundles. The intensity of reflected light returns thru the reflectance dependent fiberoptics to the DMS where it is precisely measured and compared with 24 bit resolution to stored calibration data. The return signal intensity varies with target motion and will also vary proportionately with target reflectivity variations. Therefore, these devices are most commonly used where the target reflectance remains fixed, such as in single axis stroke, displacement or vibration parallel to the axis of the sensor. Precise scaling of the reflectance dependent signal amplitude is accomplished by capturing and setting the optical peak power level with the DMS.

RC OPERATING PRINCIPLE. Fiberoptics transmit light to the target where it reflects back thru two independent groups of receiver fiberoptics in the sensor tip. The reflected light intensity in the two receivers are processed ratiometrically in the DMS, compared with 24 bit resolution to stored calibration data. The ratio function of the intensity of reflected light provides the distance measure which is independent of target reflectance variations; i.e., **reflectance compensated**.

SENSOR TIP FIXTURING and ALIGNMENT - RC Models

1) ALIGN THE SENSOR TIP

RC sensors have adjacent fiber bundles in the face of the sensor. Note there is an alignment flat on the casing to aid with alignment. The flat is ground parallel to the split between the adjacent fiberoptic bundles.

Depending upon the application, there may be a preferred orientation for best performance. For example:

- If the target is cylindrical, it is usually best to mount the sensor with the X axis parallel to the cylindrical axis
- If there is lateral motion, it may be preferrable for the direction of motion to be parallel to the x axis
- The sensor is 10 times more sensitive to tilt about the Y axis than the X axis. If tilt is directional, orient the sensor so that the target pivots about the sensor's X axis.

• If targets are discontinuous, voltage spiking at the leading and trailing edges of the parts will occur

when the direction of travel is parallel to the X axis. The voltage spiking is eliminated when the

direction of parts travel is parallel to the Y axis.

• For smooth and continuous flat surfaces, sensor tip orientation is not critical.

2) MOUNT THE SENSOR, so that the tip is perpendicular to the target surface.

NOTE: The collar and tip are not exactly parallel to each other. For factory calibrations the tip is clamped square to the target. For best accuracy, clamp to the probe tip and not to the collar.

Calibrations

Two factory calibrations are provided with each sensor channel: a mirrored (specular) target and a dull (diffuse) target. The calibration data is stored on board each sensor in separate calibration tables. Hard copies of each calibration chart are provided under separate enclosure.

Additional calibrations (up to 24) can be stored per channel.

Communication

Communication with sensors is conducted thru one RS232 port. Multiple units can be daisy-chained together.

The RS232 pins are standard:

From a PC: Pins 1, 7 & 9 = not connected Pin 2 = Receiver Pin 3 = Transmitter Pins 4, 6 & 8 = connected all together Pin 5 = Ground

(From the DMS: pin 2 = transmit; pin 3 = receive)

Temperature Stabilization

The amplifier is equipped with a temperature stabilization feature.

Procedure - Apply power to the sensor and allow the amplifier time to reach thermal equilibrium, about $\frac{1}{2}$ hour or more. Increase the <u>Set Temperature</u> 2 - 3 degrees above the equilibrium temperature. The amplifier temperature will be maintained at the set temperature ± 0.1 °C.

Notes:

 If the amplifier temperature creeps above the set temperature by more than 0.1 degree, further increase the set temperature to reach a stable and controllable temperature set point.
 This heater circuit has limited heat flow capacity. If the active temperature drops below the set temperature, which may happen when the ambient temperature drops significantly, reset the control to 2-3 degrees above the lowered equilibrium temperature.

3. The sensor should be kept thermally isolated from its mounting base.

OPERATING RANGES AND GAPS

Calibration data is stored on-board each sensor. This means the sensor can be gapped for measurements anywhere within the sensor's total operating range.

As with all type D fiberoptics, optimum performance is achieved where signal-to-noise is greatest; i.e., where the D function has the steepest slope (greatest sensitivity). A sensitivity chart is included with every sensor calibration showing its D function vs. Distance. When optimum performance is desired, refer to that chart to determine the optimum gap settings.

FACTORY CALIBRATIONS AND ACCURACY

Each sensor is been calibrated using a 0.2 micron accuracy linear air bearing stage.

Procedure

- 1. Mount the target on the stage table.
- 2. Mount the sensor off the stage table. The target moves during calibration. The sensor is stationary.
- 3. Begin with the sensor making light contact with the target.
- 4. Move the stage with target away from the sensor in small steps covering the total operating range.
- 5. After each step move, a) the stage position is read from the stage encoder and b) the sensor outputs are read. These two data are stored in the designated calibration slot.
- 6. Then, without disturbing the setup, the stage is moved back to its original position using the same steps. This time, the stage position is read from the sensor at each calibration step.
- 7. Repeatability is a measure of the accuracy of the sensor. A chart is prepared for each sensor calibration, where the repeatability data is graphed over the sensor's operating range. These charts graph the difference between the stored calibration (data moving away from the sensor) and the read data on the return moves.

REFLECTIVE NATURE OF THE TARGET SURFACE

1. Specular Targets...A mirror surface calibration should be used when making measurements to mirrored surfaces.

A factory supplied calibration to a specular target is stored in cal slot #1, where the target is a front surface mirror. This calibration should be used if the target surface is any highly polished, mirrored, glossy or very shiny (specular) target. Thin transparent materials require their own calibration, which should be stored in a separate slot.

2. Diffuse Targets... The surface looks dull rather than shiny. A diffuse surface calibration should be used when making measurements to diffuse surfaces.

A factory supplied calibration to a diffuse reflector is stored in cal slot #2, where the target surface is anodized aluminum. With diffuse surfaces, reflected light rays travel randomly varying path lengths back into the sensor tip. Reflectance compensation does not correct for random scattering of light rays, which can lead to measurement errors.

So, for diffuse target surfaces, which include anything with a dull, flat or matte finish, as well as those with machined, honed or ground finishes:

- Use the diffuse calibration or
- Calibrate the system to the target material and store in a separate cal slot.

MATERIAL	% REFLECTANCE
Gold Mirror	100
Mirror Polished Aluminum	85 - 90
Mirror Polished Stls Stl	60 - 70
Brushed Aluminum	40 - 50
Copper Clad PC Board	45
Finely Ground Steel	30 - 35
Anodized Aluminum	20 - 25
Silver Paint, Glossy	15 - 20
Photo Paper, High Gloss	15
inkjet Paper, Bright White	7 - 8
Fiberglass, Glossy	7
Black Plastic, Glossy	6
Black Matte Finish	3
Column of Water	2
Flat Black Rubber	1

The table here shows the relative reflectance of some common materials.

DIFFUSE REFLECTION

Remote Operation via PC

1. Apply power to the sensor.

2. *Load into PC & Execute* the DMS Control Software provided. The sensors will first go thru an initialization routine. During this process, in addition to many other checks, the software reads and copies all of the calibration tables from the sensor.

3. *Allow the sensors time to reach thermal equilibrium,* app. 20 minutes. For example, in a factory environment, where the air temperature has been around 24 C, the sensor temperatures rise to about 32 C. Therefore, the heater controls should be set to 2-3° C higher in each sensor. They are very stable at this set point.

NOTE: The temperature set point may require higher or lower set temperatures depending upon the factory temperatures in winter and summer months.

The Set Temperature should be 2 - 3 degrees above the equilibrium temperature. The amplifier temperature will be maintained at the set temperature \pm 0.1 °C. If the amplifier temperature creeps above or below the set temperature by more than 0.1 degree, change the set temperature to reach a stable temperature set point.

4. The sensors are now ready to make measurements.

DMS Control Software

The DMS Control Software opens at the **Com Port** tab.

Opening One Sensor

Opening Multiple Sensors on One Com Port

- 1. At the "10DMS" tab select the com port from the drop down list.
- **2**. At "Number of Channels, enter the number of sensors to open.
- 3. Enter the sensor serial numbers
- 4. Click Open Com Port

Com Port	Configuration Multi Cor	figuration Multi Graph	Data Stream Burs	st Read New Calibration Admin
	Single Sensor 10 DMS Ra	ck Multiple Com Ports (RS232 or USB)	
	Com Port		Serial Numbers	Startup Instructions:
	ASRL1::INSTR	X	121	1. Select com port from drop down list.
	AirStage muDMS RC 731	rial Numbers	122	2. Select RS-232 bps. Default sensor speed is
	ASRL14 (COM9 - USE ASRL16 (COM12 - USE	3 Serial Port)		3. Enter the number of channels.
	RS-232 Dps	be Serial Port)	123	4. Enter the serial numbers for your system ir
	19.2Kbps 💎		124 💻	table. If the serial numbers are consecutive (can enter the first serial number then press '
	Open Com Port		125	5. Click 'Open Comm Port'.
			125	Wait for Com Status to turn green.
	Change Sensor bps		126	All tabs can now be selected.
	CLOSED		127	Change Sensor bps: (after com port is open)
			128	1. Select new bps setting.
	Close Com Port		0	2. Click 'Change Sensor bps'
	Rescan Com Ports		-	

Opening Multiple Sensors on Multiple Com Ports

- 1. At the "Multiple Com" tab enter the number of com ports to open.
- **2**. At "Com Ports", in each open window, select a com port from the drop down list. enter the number of sensors to open.
- 3. Click Open Com Port

·	DMS Setup	and Control (version 1.34)			
NOTE	Com Port	Configuration Multi Configuration	Multi Graph Data Stream	Burst Read	New Calibration Admin
Each com port can only open one sensor in this mode.	1	Single Sensor 10 DMS Rack Mul Number of Coms Com Ports 2 2 RS-232 bps 19.2Kbps Open Com Port Change Sensor bps CLOSED Close Com Port Re-scan Com Ports	Itiple Com Ports (RS232 or USB SRL14 (COM9 - USB Serial Port) SRL16 (COM13 - USB Serial Port)		Startup Instructions: 1. Enter the number of com ports 2. Select com ports from drop dow 3. Select RS-232 bps. Default sens 4. Click 'Open Comm Port'. Wait for Com Status to turn greer All tabs can now be selected. Change Sensor bps: (after com po 1. Select new bps setting. 2. Click 'Change Sensor bps'

SETUP & CONFIGURATION

Use the Configuration Tab to setup the sensor for measurements. The sensor should be fixtured in place perpendicular to the target to be measured. Click Title Bar of each section for instructions.

1. *Channel Select*: select the sensor channel or the sensor serial number. NOTE: The software will recognize the type sensor. If the sensor is a RC type, the Reflectance Peak Set block will be locked out. The Reflectance Peak Set block becomes active when the sensor selected is a D type.

2. *Temperature:* Use the slide controls to set the temperature of the electronics. For best accuracy with slow speed applications, allow the unit to reach steady state temperature prior to making any measurements. This can take 15 - 30 minutes. If the heater is not needed it can be turned off (set to 0) to reduce power consumption.

3. Calibration Select: choose the appropriate calibration data table for the target to be measured.

4. **Optical Power:** The Transmit power is always full on. The Received power varies with the sensor's gap to target.

5. *Reflectance Peak Set:* the sensor must be scaled (calibrated) to the reflectance of the target to be measured. There are two methods:

- Manual Adjust the sensor gap for maximum 'Reflect Value' and press 'Peak Set'. This will lock in the reflectance value in the 'Reflectance Peak' window.
- AutoPeak Press 'Peak Hold' and move the sensor tip slowly thru the peak reflectance value. The reflectance peak will be captured and held in the 'Reflectance Peak' window.

6. *Reset Gap.* After setting the reflectance peak value, reset the operating gap to the desired starting point for measurements on the Near Side or the Far Side.

DMS Setup and Control (version 1.50_F)				
Com Port Configuration Multi	Configuration Multi	Graph Multi Trace Da	ata Stream 🎽 New Cal	ibration Admin F_Cal F_Scan A
Channel Select	Optical Power	Reflectance Peak Set	Temperature °C	Instructions
Serial:902 ch:1	Transmit Receive 100-	Reflect Value	Set Point Current	Click Title Bar of each section for instructions.
Calibration Select 1: Mirror (specular)	50-	Peak Set Peak Hold	40- 40- 30- 30-	
Average	0.8	Reflectance Peak 0.150438	20- 20- 30 24.56	
4096 (slow) 🔽)	Dist	ance and Chart Data	
Graph Display Near Distance Distance (Near 0.82491 Distance (Far) Max 90 Ta	90.000 are Scale OFF x 80.000 60.000 re 0.82491 50.000	U - 10 - 10 - 10 -		

11

Chart Data

Average	Reflectance Peak 20-0 20-0 11.0 2.90298 38 38.75
	Distance and Chart Data
Graph Display Distance G96.316	696.500 - 696.500 - 696.500 - 696.450 -
Reflect% 46 50 50 50 50 50 1000 2000 4000	696.300 - 696.300 - 696.200 - 696.150 -

This live graph displays data with selectable point density from 50 - 4000 points on an autoscaling chart.

AUTOSCALING

The chart can be cleared at any time and it will restart autoscaling the current input data. Autoscaling can be turned off at any time. When autoscaling is off, the minimum and maximum points are displayed. The user can enter any value in the min-max windows.

PEAK-TO-PEAK

Peak-to-peak displays the difference between the maximum and the minimum value of the points displayed on the live chart. If 50 points are displayed, this is the pk-pk reading of 50 points. If 4000 points are displayed, it is the pk-pk reading of 4,000 points.

TARED READINGS

A Tare Function is included in the Live Chart Display.

•

- In the TARE WINDOW click 'Tare Reset' to activate tared readings.
- With Tare Scale ON, the live chart displays the tared values.
- With Tare Scale OFF, the live chart displays the untared values.
- The Tare Window displays the Maximum and Minimum tared values as well as the Max.-Min. difference (pk-pk tared reading).

Max - Min is the <u>pk-pk value of the tared readings</u>. This value holds until the tare is reset.

Note: Tare Reset can only be done at the Configuration Tab.

etup and Co	ntrol (version 1.4	6)	
Com Port	Configuration	Multi Configuration Multi Graph Data Stream New Calibration Admin	
			EXIT
Se Ca	hannel Select rial:334 ch:1 libration Select irror (specular) Average	Optical Power Reflectance Peak Set Temperature °C Instructions Transmit Receive Reflect Value Set Point Current 100- 100- 0.457673 50- 50- 50- 50- Peak Set Peak Hold 40- 40- 0- 0- 0- Reflectance Peak 20- 20- 20 21.6 0.825177 39 38.94 Set Point	section for
	2 (fast) 🗸	Distance and Chart Data	
Graph Disp Far Dis Distance (0 Distance (61.8618 Reflect% 55 Peak to P 0.19661	Nar Lance V Near Auto Scale O Max 0.14 Min 0.08 Display Points 1000 V Clear Chart	0.140000- 0.120000- 0.0800000- 0.0800000- 0.0600000- 0.0600000- 0.0200000- Max - Min 0.0200000- Max - Min 0.0200000- Max - Min 0.0200000- - Max - Min 0.0200000- - - - - - - - - - - - - - - - -	41444
	Distance UOM	Save Data to File Delay (sec) File Name OFF Points Saved 0 RST %	Browse
Status an	d Debug Curren	Error Count 0 RST Samples/sec	

AVERAGE

DMS sensors have an internal sampling rate of 20 KHz; miniDMS sensors have a 40 KHz clock rate. The average filter controls how many readings the sensor will average together before sending the results to the serial port. Higher averages will slow down sensor response and increase resolution. The actual sample rate (readings/second) is displayed below the live chart. The maximum achievable data rate is limited by the serial connection. At the slowest speed (4096), the sample rate is approximately 10 readings per second for mini-DMS sensors and 5 r/s for DMS sensors. For the highest speed, use the Data Stream tab.

GRAPH DISPLAY

At Graph Display, select one parameter to chart from the drop-down list:

- Distance select units of measure at Distance UOM*
- Reflection % -compares the target material to the reflectivity of the calibration table selected
- Temperature sensor amplifier temperature, °C
- · Sensor Curve raw sensor curve generally used for factory diagnostics
- Receive Power the amount of optical power received from a target

* Select Distance UOM (*Units of Measure*): microns or mm (millimeters), or inch or ml (milliInches)

SAVING DATA TO FILE

There is a common interface at each tab for saving data to a file. Click **Browse** to name a data file. NOTE: Use the file extension .txt. Use Excel to open the text file.

- · Delay dial in the number of seconds desired between data points. Default = 0 seconds
- ON/OFF Click the OFF button to start taking data. The button state will change to ON. The # of points saved is accumulated in the *Points Saved* window. Click the ON button to stop recording data. The button state will change to OFF. Data collection can be restarted by pressing the ON/OFF button again, and the data will be added to the same data file.

The table below shows a sample of the data recorded. Note the column headings give the sensor serial number and channel number.

- Time Stamp An absolute time stamp: the # days starting 01/01/2000
- · Delta T The amount of time between successive data points, accurate to approx. 1 microsecond
- · Raw Sensor Output A factory diagnostic
- · Signal Power % Optical Power returned from the target
- Temperature Amplifier temperature, °C
- RC/D Near Distance Distance for an RC sensor or the Near Side for a D sensor

units of measure = previous set from live graph

• D Far Side Distance - Distance on the Far Side for a D sensor

units of measure = previous set from live graph

Reflect Percent - reflectivity of the target material compared to the calibration table selected

Note: Time stamping data points enables post processing applications such as fft analysis.

start:1/1/2000	679 / 1	679 / 1	679 / 1	679 / 1	679 / 1	679 / 1	679 / 1
Time Stamp (days)	Delta T (sec)	Raw Sensor Output	Signal Power	Temperature	RC/D near Distance	D far side Distance	Reflect Percent
3092.415247	0.019584	3.630522	10.588235	27.75	3175	0	69.230766
3092.415258	0.017856	3.630842	10.588235	27.75	3175	0	69.230766
3092.415317	0.021408	3.631108	10.588235	27.8125	3175	0	69.230766
3092.415318	0.018912	3.63085	10.588235	27.8125	3175	0	69.230766
3092.41533	0.021936	3.630989	10.588235	27.75	3175	0	69.230766
3092.415341	0.019872	3.631088	10.588235	27.8125	3175	0	69.230766

MULTI-CHANNEL CONFIGURATION

The *Multi Configuration* tab simultaneously displays data from as many as 10 sensor channels. For sigle channel units, only one column is active. At this tab you can control or set the following individual sensor variables:

- data average
- transmit power
- amplifier set temperature
- calibration slot

Serial	Serial	Serial	Serial	Serial	Serial	Serial	Serial	Serial	Serial
521	379	378					0.000		
Average 4096	Average 4096	Average	Average - <0>	Average / <0>	Average <0	Average <0	Average <0	Average	Average + <0>
Transmit%	Transmit%	Transmit%	Transmit%	Transmit%	Transmit%	Transmit%	Transmit%	Transmit%	Transmit%
() 100	() 100	() 100	÷) 0	÷ 0	+ 0	τ 0	60	÷ 0	- 0
Receive%	Receive%	Receive%	Receive%	Receive%	Receive%	Receive%	Receive%	Receive%	Receive%
5.9	5.9	5.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Set °C	Set °C	Set °C	Set °C	Set °C	Set °C	Set °C	Set °C	Set °C	Set °C
38	38	38	÷)0	÷ 0	÷ 0	+ 0	0	60	- 0
Live °C	Live °C	Live °C	Live °C	Live °C	Live °C	Live °C	Live °C	Live °C	Live °C
38.0	37.9	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Calibration	Calibration	Calibration	Calibration	Calibration	Calibration	Calibration	Calibration	Calibration	Calibration
7 1	· 1	÷)1	÷) 0	÷) 0	0	÷ 0	6 0	0	0
RC/ D near	RC/ D near	RC/ D near	RC/ D near	RC/ D near	RC/ D near	RC/ D near	RC/ D near	RC/ D near	RC/ D near
0.00000	0.0000(0.0000(0.0000(0.0000(0.0000(0.0000(0.0000(0.0000(0.00000
D Far	D Far	D Far	D Far	D Far	D Far	D Far	D Far	D Far	D Far
3048.0	3048.0	3048.0	0.0000(0.0000(0.0000(0.0000(0.0000(0.0000(0.00000
Reflect%	Reflect%	Reflect%	Reflect%	Reflect%	Reflect%	Reflect%	Reflect%	Reflect%	Reflect%
7.9	8.6	8.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Distar	nce UOM Sav	ve Data to File	Delay (sec)	60	File Name				[
		ON	Points Saved	1430 RS	T & C:\grac	e tests\378_3	79_521.txt		

MULTI-CHANNEL GRAPH

The *Multi Graph* tab simultaneously displays four live autoscaling charts. The charts display 1000 points when fully loaded. Data averaging can be controlled and units of measure selected.

Each chart has drop down menus for

- » selection of sensor
- » selection of displayed parameter

MULTI-TRACE

The *Multi Trace* tab simultaneously displays three live autoscaling charts with Tared or Non-Tared Readings. The charts display 1000 points when fully loaded. Data averaging can be controlled and units of measure selected. *NOTE: Tare Reset can only be done at the Configuration Tab.*

Each chart has drop down menus for

- » selection of sensor
- » selection of displayed parameter

EXAMPLE: SETUP PROCEDURE

- Use the Config Tab to setup each sensor prior to using Multi Trace
- 2. At Channel Select pick a sensora) Set The Optical Peak
 - b) Reset the Tare
- 3. Repeat For Each Sensor

DATA STREAM

The *Data Stream* mode enables continuous recording of data at high speeds. Default presets include:

- Time Stamp
- Reflectivity
- Temperature

5000 readings per second will be achieved as follows:

- set the BPS to 115.2 Kbps
- set stream average to 1 (fast)
- · deselect the Time Stamp, Reflectivity and Temperature presets
- · Click the Stream Control Button to begin saving data
 - Note: If you have not preselected a file, you will be instructed to browse to a file for saving the data. Use the file extension .txt when naming the file.

As data is streaming to the file:

- a) Points Saved ... accumulates the total number of readings
- b) Sample Rate ... displays the active number of readings per second

NEW CALIBRATION

The *New Calibration* tab can be used to create a new calibration for the sensor.

- At New Calibration Slot, select the calibration slot to be used
- At *Description*, enter a description of the calibration
- At Distance UOM, select the units of measure that will be used for the calibration distance
- Click Restart Calibration
- At Calibration Point Distance, enter the current distance between the sensor and the target
- Click Take Sensor Reading
- Repeat the previous 2 steps until the calibration is completed
- Click "Send New Calibration To Sensor"

Com Port Configuration Multi Configuration	Multi Graph	Data Stream	Burst Read	New Calibration	Admin		
Serial: 679 🖵							EXIT
Restart Calibration	Calibration Instruc	tions					<u>^</u>
New Calibration New Calibration based on existing data	 Select Calibratic Enter a descrip Select UOM for Click 'Restart Ca Enter current c Click 'Take Sen: Repeat steps 5 After last calibratic 	on slot. New calib tion for this calibra- the calibration dis alibration Data' to listance between sor Reading' or pri- and 6 for each ca ation point dick 'S	rations will overv ation. (24 charac stance that will l restart calibration sensor tip and t ess 'Enter' key to alibration point. end New Calibrat	vrite old data. ters max). o process. (will not c arget. o save this calibratio tino to Sensor'	hange data store n point.	ed on sensor).	
		Storr point click o					
New Calibration Slot	1.02-				-1	JU Ratio 🔼	
Description	0.98-				-80	o snr 📥	
Calibration Point Distance	0.96 - 0.94 - 疑 0.92 - 0.9 - 0.88 -				-61 -41) N N N	
	0.86 -				-20)	
Calibration Points 1º	0.82- <mark>1</mark> 3.6	3.7 3.8	3.9 4 Distance	4.1 4.2	4.3 4.4		
Distance UDM Save Data to File	Delay (sec) 1	File N	ame			Bro	owse
OFF Po	ints Saved 5621	RST &C:\	Documents and	Settings\Jerry\Desk	top\test.txt		
Status and Debug Current Process	Error Count 37	Sample Rate (rea	adings/second)	5.1			

NEW CALIBRATION BASED ON EXISTING DATA

The *New Calibration* tab can also be used to rescale an existing calibration. Only one data point is required for scaling. Digital sensors are normally provided with two calibration tables: mirror and diffuse targets. Select the table which best fits a new target. For best accuracy, pick a scaling distance that is in the middle of the range of operation for the application.

- At Reference Calibration Table, select the reference table
- At New Calibration Slot, select the calibration slot to be used
- At **Description**, enter a description for the calibration
- At Distance UOM, select the units of measure that will be used for the calibration distance
- At Calibration Point Distance, enter the scaling distance between the sensor and the target
- Click Take Sensor Reading
- Click "Send New Calibration To Sensor"

ADMIN - CALIBRATION TABLES

The *Admin-Calibration Tables* tab allows the user to inspect the stored calibration data in chart view and tabular forms.

Click on "Send Calibrations To File" to create a text file of a calibration table.

Com Port Configuration Multi Configuration Multi Graph Data Stream New Calibration Admin
Calibration Tables muDMS-Analog Setup Sensor Data Auto-Cal Select Firmware Update
5-
Channel select
Serial:580 ch:1 Calibration table display 1: Mirror (specular) 1-
Send Calibrations to File 0-1 0-1 0-1 0-1 View Modify 0 1000 2000 3000 4000 5000
Tabla

Calibration Table Display - Use this dropdown menu to select a calibration table for viewing and editing.

A calibration table includes three columns of data:

- 1. Distance units are selectable at the UOM button
- 2. Ratio the raw (unscaled) sensor output function
- 3. SNR a measure of the signal strength/target reflectance

Distance	Ratio	SNR	
0.000000	0.000000	6	
50.799999	0.016940	71	
101.599998	0.018750	148	
52.399994	0.025790	183	
203.199997	0.035510	197	
254.000015	0.048620	203	
304.799988	0.064250	204	
255 600006	0.081030	204	- T

CALIBRATION TABLES - EDITING

There are two sub-tabs: View and Modify.

In the View Tab calibration tables can be sent to a file or they can be copied to a clipboard.

In the Modify Tab

- Calibration tables can be pasted from the clipboard
- The Calibration Description can be edited
- The Cal Table can be reset to original values if an error has been made
- The Calibration Gain (Sensor Gain) can be entered if known.

Sending Modified Calibration To Sensor

Before sending a calibration to the sensor, you must select a slot from the Calibration Table Display drop-down menu. That is where the modified calibration will be stored.

View Modify					
	Table (Edit)				
	Distance	Ratio	SNR	Calibration Description	
Paste Table From Clipboard	0.000000	0.000000	6	Mirror (specular)	
	50.799999	0.016940	71	Calibration Gain	
Clear Table	101.599998	0.018750	148		
	152.399994	0.025790	183		
	203.199997	0.035510	197		
Reset Table	254.000015	0.048620	203		
	304.799988	0.064250	204	Send Modified Calibratio	n to Sensor
	355 600006	0.081030	20/	Send Modified Calibration	r to sensor

ADMIN - SENSOR DATA

The *Admin-Sensor Data* tab is used to view sensor information for factory diagnostic purposes.

Com Port	Configuration	Multi Con	figuration	Multi Graph	Data St	ream E	Burst Read	New Calibrati	on Admin	
Calibratio	on Tables Senso	r Data 🛛 4	Auto-Cal Sel	ect						EXIT
	Status Channel 🖞	0	firmware 2.	667	ErrorLog					
	Serial	679	Cal	(÷) o	Error	Source	Description			
		42020	6		128	getta				
	Response curve ji s	.02930	Near	1	Error	Source	Description			
	Receive Powe	r 27	Far		128	getta]			
			NaN		Error	Source	Description			
	i emperature j	28.50	SNR%	-	16	getta	J			
	Model Ty	rpe R	Juga		Error	Source	Description			
					128	getta				
					Error	Source	Description			
					128	getta				

ADMIN - AUTO-CAL SELECT

The *Admin-Auto-Cal Select* tab is intended for use in applications where 2 or 3 distinctly different targets are to pass by the sensor, and the distance measure to each of those targets is required.

When the *Admin-Auto-Cal Select* tab is in view, the sensor will lookup distance information from the stored calibration tables based upon the reflectivity of the target surfaces. For example, targets with a mirror-like finish (specular reflectors) have a different response than dull or diffuse reflectors, and therefore the two calibration tables are stored on board the sensor. The controls at this tab allow the user to select ranges of reflectivities of the targets that will be measured. The sensor will generate accurate distance information based upon the appropriate calibration table, as defined by the reflectance values. This function has no impact on the sensor sample rate.

Auto-Cal Select turns off when this tab is deselected.

Calibration Tables Sensor Data Auto-Cal Select	
Serial: 679 🤝	Automatic Calibration Selection Instructions: 1. Select Default calibration
6: VINAN	Reflectivity 1. Select alternate calibration tables with reflectivity range based on default calibration.
Alternalte 1 Minimum%	twity Range indee: % Maximum% Test each target surface with default calibration to determine reflectivity range. Distance and reflectivity is shown to the right of the drop down selector.
Alternalte 2 Minimum% 5: \to 1	Maximum% 15 Maximum%
Graph Display 3500.00 -	
Distance 3400.00 - Table Selected Distance 3300.00 - 6 NaN 3109.00 -	
Reflectivity 3000.00 - NaN 2900.00 - 2800.00 -	0- 0- 0-
Distance UDM Save Data to File Delay (se	(sec) 1 File Name Browse
Status and Debug Current Process	aved 5621 RST % C:\Documents and Settings\Jerry\Desktop\test.txt

ADMIN - Firmware Update

The *Admin-Firmware Update* tab is used to update the sensors internal firmware coding.

• Click the Firmware Update button. The Reset button will light and then turn off when Page writing commences. When page writing is finished (254 pages), the reset light turns on again as the sensor is refreshed. When the reset light turns off at this point, the update is complete.

	Fii	rmware U	pdate	
	Mode t	el Type RC Serial 580 ResetF	~	
	micron		Save D	OFF
is and Det	oug	Current F Page wr	Process ite:0	

KEYPAD/LCD OPERATION

When the **DMS** is first powered up, it displays the bar graph screen that was last displayed before the power down. For local operation, **DMS** systems have a two-tier display system:

- 1. A menu program for setup and selection of parameters and features
- 2. Active bar graphs for displaying measured results

MENU STRUCTURE

To move from the bar graph display to the menu, press and hold the MENU button for 1 second (This is the only keystroke requiring a press and hold). The **DMS** has a horizontally arranged menu structure. The top line of the display shows the present selection choice in brackets. The keypad buttons will do the following:

- MENU ... Returns to the active bargraph display
 - < ... Scrolls left
 - > ... Scrolls right

SELECT ... Opens the bracketed selection choice

The menu is arranged in the following order:

- Bar Graph Display
- Display Channel (for dual channel units)
- Distance Tare
- Reflectance Tare
- Calibration Slot
- Calibration Scale
- · Gain Setting
- Temperature Set
- Units of Measure
- RS-232 BPS

DMS SETTINGS

The following parameters can be set or selected:

- Calibration Data Slot
- System Gain/Optical Signal Power
- Amplifier Temperature
- RS-232 Baud Rate
- Units of Measure

The following section gives detailed operating instructions for use of the keypad/LCD.

NOTE: For dual channel units, the LCD can be set (from the Display Channel Menu) to display channel 1 only, channel 2 only, or both channels 1 & 2.

OPERATING PROCEDURES

Reflectance Dependent Fiberoptics

With reflectance dependent fiberoptics, the optical signal power reflected from a target is proportional to the gap and to the reflectance of the target. The D Type sensor has a double valued output function called the near side and the far side regions. Operation in the near side region gives high sensitivity with limited range. Operation on the far side gives moderate sensitivity with much greater operating range.

The optical peak is where the reflected light signal strength reaches a maximum value. To make accurate distance measurements with these devices, the following procedure must be followed:

- 1 Check Gain/ Signal Power
- 2 Set Optical Peak
- 3 Select Near Side or Far Side

<u>Before any measurements are made</u>, the sensor should be fixtured perpendicular to the target surface, the signal power checked, and the optical peak established. This procedure optimizes the signal strength and calibrates the sensor to the target surface to be measured. This is easily accomplished using the keypad/LCD on the DMS unit.

Keypad Procedure

1. Check Gain/ Signal Power Level

Scroll to the "Gain Setting" screen and press SELECT

- The top line shows the current Gain Setting
- The bottom line shows the Signal Power Level

PROCEDURE. At very close range to the target, vary the sensor gap and move to the highest Signal Power reading. At that gap position, use the cursor keys to increase or decrease the signal strength as needed. Adjust the gain to achieve the highest signal power safely without exceeding *100% signal power*

press SELECT

The best performance is attained with the highest SPL.

Important! The Gain and Optical Peak Power are linked together. The optical peak MUST be reset any time the gain is changed to a new value.

2. Set Optical Peak

1. Scroll to the "Set Optical Peak" screen and press SELECT

The optical power is displayed on the top line.

2. Adjust the sensor gap to maximize the Optical Power reading. When the optical power is maximized, hold the sensor at that gap and press SELECT

Important! The Gain and Optical Peak Power are linked together. The optical peak MUST be reset any time the gain is changed to a new value.

MATERIAL	% REFLECTANCE
Gold Mirror	100
Mirror Polished Aluminum	85 - 90
Mirror Polished Stls Stl	60 - 70
Brushed Aluminum	40 - 50
Copper Clad PC Board	45
Finely Ground Steel	30 - 35
Anodized Aluminum	20 - 25
Silver Paint, Glossy	15 - 20
Photo Paper, High Gloss	15
inkjet Paper, Bright White	7 - 8
Fiberglass, Glossy	7
Black Plastic, Glossy	6
Black Matte Finish	3
Column of Water	2
Flat Black Rubber	1

The table here shows the relative reflectance of some common materials.

3. Select Near Side or Far Side

The DMS does not automatically know which side it is on. The user must set the DMS to measure on the near side or set it to measure on the far side.

Scroll to the Bar Graph Display. Move the cursor to *near* or *far* Press SELECT

Keypad/LCD Details

BAR GRAPH DISPLAY

The choices for *dual channel* bar graph displays are:

- 1. Distance only both channels
- 2. Reflectance only both channels

The choices for single channel bar graph displays are:

- 1. Distance Only
- 2. Reflectance Only
- 3. Distance & Reflectance
- 4. Total Runout, T.I.R.
- 5. Peak-to-Peak Distance Amplitude, 40 Hz to 5 Khz
- 6. Peak-to-Peak Distance Amplitude, 4 Hz to 5 Khz

In this display an asterisk highlights the selection choice.

MENU ... Returns to the main menu

- < ... Moves asterisk left
- > ... Moves asterisk right

SELECT ... Sets the bar graph display to the asterisked item

<u>Note</u>: The select key must be pressed to activate a new selection. Pressing the menu key returns to the main menu without saving the new selection.

BAR GRAPH DISPLAYS

1 Channel DISTANCE ONLY

The upper line displays 3 values:

- the start of the measurement range, 0.00
- the active sensor-to-target distance
- the upper limit of the DMS measurement range

The lower line is an active distance bar graph.

2 Channel DISTANCE ONLY

Channel 1 on Top Line, Channel 2 on Bottom Line

Note: mils = mINCH = 0.001"

REFLECTANCE ONLY

The upper line displays three values:

- zero
- the active percent reflectance relative to the loaded calibration target material
- 100%

The lower line is an active reflectance bar graph

DISTANCE & REFLECTANCE

The upper line displays:

- The active distance measurement with active bargraph The lower line displays:
- The active reflectance measurement with active bargraph

BAR GRAPH DISPLAYS CONTINUED

TOTAL INDICATED RUNOUT, T.I.R.

When T.I.R. is selected from the Bargraph Display menu, a two-line display is presented that gives 5 numbers:

	Top Line	
Minimum Value	Tared Distance	Maximum Value
	Bottom Line	
Absolute Distance		T.I.R.

where T.I.R. = Maximum Value - Minimum Value.

The left or right cursor keys, when depressed, will reset the T.I.R. Values to zero.

NOTES:

1. The T.I.R. function is intended for slowly moving parts such as the manual rotation of a shaft. It is limited to movements at 10 Hz and slower.

2. T.I.R. can be used with or without the distance tared, however it makes more sense to use this function when the distance reading is tared to zero before motion starts.

PEAK-to-PEAK VIBRATION AMPLITUDE

Peak-to-Peak amplitude of vibrations can be measured with one of two high pass filters: 40 Hz - 5 Khz and 4 Hz - 5 KHz.

These two displays will appear exactly like the distance only displays. The LCD is refreshed 4 times per second, displaying the pk-pk amplitude of 4092 readings taken every 1/4 second.

DISPLAY BRIGHTNESS AND CONTRAST

The display brightness and contrast levels can be adjusted while viewing any bar graph display.

While viewing any bar graph display, press the select button to bring up the contrast and lighting screen shown here.

Press the select button again to switch between contrast and lighting.

Use the arrow buttons to increase or decrease the levels.

Press the menu button to return to the bar graph display. The new settings will be saved.

Note: The display brightness can be totally turned off to reduce power consumption as in a "Sleep Mode".

DISTANCE TARE

The distance tare feature sets the current measured value to zero. The active bar graph remains in the untared mode. To Tare to the current measured value:

move the asterisk to "reset-on" Press SELECT

Off is used to turn off the tare function On is used to turn on the tare to the previously selected tare value.

NOTE: When the tare function is on, a plus or minus sign is placed in front of the active tared value, and, the tared value is displayed on the distance tare setup screen.

REFLECTANCE TARE

The reflectance tare feature sets the current measured value to 100%. The active bar graph remains in the untared mode. To Tare to the current measured value:

move the asterisk to "reset-on" Press SELECT

Off is used to turn off the tare function

On is used to turn on the tare to the previously selected tare value.

NOTE: When the tare function is on, a plus or minus sign is placed in front of the active tared value.

SELECT CALIBRATION TABLE

This screen is used to select which calibration table the system will use for distance lookup. Twenty four (24) characters are available to describe the calibration data. The factory supplied calibrations are stored in slots 1 & 2. Thirty one (31) slots are available for storage. Each slot can store up to 256 data points.

Scroll < or scroll > to the desired cal table Press SELECT The cal table will be loaded for use.

CALIBRATION SCALING

Scaling of the sensor calibration data is useful for two purposes:

- 1. It can be used to reset the sensor calibration accuracy if the DMS system sensitivity has drifted over time or temperature.
- 2. It can be used in place of an actual distance calibration, to rescale the DMS calibration data to a different target material for which a calibration does nor exist.

USING KEYPAD

Using the keypad only, the Scaling Gap MUST be equal to the sensor's maximum operating distance. To rescale the selected calibration that has been loaded:

- a. Gap the sensor to the maximum distance from the target
- b. From the main menu, scroll to Calibration Scale and press SELECT
- c. The display will show the master distance and the (active <u>unscaled</u> distance measurement). Note the active reading. If it is not correct, scaling is needed.

USING PC

Using a PC keyboard, any gap can be used for Calibration Scaling. To rescale the selected calibration that has been loaded:

- a. Set the master distance via a serial port command (see RS232 command instruction set)
- b. Gap the sensor to the master distance from the target
- c. From the main menu, scroll to Calibration Scale and press SELECT
- d. If the unit is a 2-channel DMS, select ch. 1 or ch. 2
- e. The display will show the master distance and the (active <u>unscaled</u> distance measurement). Note the active reading. If it is not correct, scaling is needed.
- f. Move the asterisk to "reset-on"
- g. Press SELECT
- h. Return to your bar graph display and note the active reading is now correct.

Off is used to turn off the scaling function

On is used to turn on the scaling to the previously selected value.

GAIN SETTING*

- The top line shows DMS internal gain.
- The bottom line shows the strength of the signal returned from the target under measurement.

PROCEDURE. Move the sensor thru its operating range and note the highest reading. Use the cursor keys to increase or decrease the signal strength as needed. Adjust the gain to achieve the highest signal power safely without exceeding 100% signal power.

*Note: If the target is very dark, SPL below 5%, a higher gain setting will increase the signal strength and will improve resolution

TEMPERATURE READ and SETTING

This display gives the temperature set point on the upper line and the active temperature measurement on the lower line. The units are always °C.

PROCEDURE FOR TEMPERATURE STABILIZATION

- Power up the DMS and allow it to reach an equilibrium temperature.
- Use the cursor keys to set the temperature 2-3 de grees above the equilibrium temperature
- Press SELECT
- The DMS temperature will maintained at the set tem perature ± 0.1°C in normal ambient room temperature conditions

Occassionally check the active temperature. If ambient conditions change and the active temperature exceeds or falls below the Set Temperature, the Set Temperature must be reset to regain temperature control.

UNITS OF MEASUREMENT

Scroll < or scroll > to the desired units

Press SELECT

SELECT RS232 BAUD

Scroll < or scroll > to the desired baud rate

Press SELECT

Note: A custom baud rate can be selected by the keypad, but the value of the custom baud must have been preset by using a PC terminal.

